Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression.
نویسندگان
چکیده
We examined the osteoblast/osteocyte expression and function of polycystin-1 (PC1), a transmembrane protein that is a component of the polycystin-2 (PC2)-ciliary mechano-sensor complex in renal epithelial cells. We found that MC3T3-E1 osteoblasts and MLO-Y4 osteocytes express transcripts for PC1, PC2, and the ciliary proteins Tg737 and Kif3a. Immunohistochemical analysis detected cilia-like structures in MC3T3-E1 osteoblastic and MLO-Y4 osteocyte-like cell lines as well as primary osteocytes and osteoblasts from calvaria. Pkd1m1Bei mice have inactivating missense mutations of Pkd1 gene that encode PC1. Pkd1m1Bei homozygous mutant mice demonstrated delayed endochondral and intramembranous bone formation, whereas heterozygous Pkd1m1Bei mutant mice had osteopenia caused by reduced osteoblastic function. Heterozygous and homozygous Pkd1m1Bei mutant mice displayed a gene dose-dependent decrease in the expression of Runx2 and osteoblast-related genes. In addition, overexpression of constitutively active PC1 C-terminal constructs in MC3T3-E1 osteoblasts resulted in an increase in Runx2 P1 promoter activity and endogenous Runx2 expression as well as an increase in osteoblast differentiation markers. Conversely, osteoblasts derived from Pkd1m1Bei homozygous mutant mice had significant reductions in endogenous Runx2 expression, osteoblastic markers, and differentiation capacity ex vivo. Co-expression of constitutively active PC1 C-terminal construct into Pkd1m1Bei homozygous osteoblasts was sufficient to normalize Runx2 P1 promoter activity. These findings are consistent with a possible functional role of cilia and PC1 in anabolic signaling in osteoblasts/osteocytes.
منابع مشابه
Kif3a Deficiency Reverses the Skeletal Abnormalities in Pkd1 Deficient Mice by Restoring the Balance Between Osteogenesis and Adipogenesis
Pkd1 localizes to primary cilia in osteoblasts and osteocytes. Targeted deletion of Pkd1 in osteoblasts results in osteopenia and abnormalities in Runx2-mediated osteoblast development. Kif3a, an intraflagellar transport protein required for cilia function, is also expressed in osteoblasts. To assess the relationship between Pkd1 and primary cilia function on bone development, we crossed hetero...
متن کاملEstablishment of a model of murine odontoblasts underexpressing PKD1 using shRNA.
We have previously shown that PKD1, the gene encoding Polycystin-1 (or TRPP1) is expressed in human odontoblasts and that this protein is localized at the primary cilium of the cell. Nevertheless, its function remain unclear in this cell even if studies on osteoblasts, osteocytes and chondrocytes give TRPP1 as a promising candidate for mechanotransduction in response to mechanical stress. Conse...
متن کاملChapter 5 THROMBIN (105-126 ok
Thrombin-related peptide 508 (TP508) accelerates bone regeneration during distraction osteogenesis. Here we examined the effect of TP508 on bone regeneration during distraction osteogenesis by immunolocalization of RUNX2 protein, a marker of osteoblast differentiation, osteopontin (OPN) and bone sialoprotein (BSP), two late markers of the osteoblast lineage. Distraction was performed in tibiae ...
متن کاملDownregulation of SOST/sclerostin by PTH: a novel mechanism of hormonal control of bone formation mediated by osteocytes.
Both chronic excess of PTH, as in hyperparathyroidism, and intermittent elevation of PTH (by daily injections) increase the number of osteoblasts. However, whereas the former condition can lead to bone catabolism, intermittent administration of PTH causes bone anabolism. The striking difference between bone loss and bone gain in the two conditions might result from a negative vs. positive balan...
متن کاملSP7 Inhibits Osteoblast Differentiation at a Late Stage in Mice
RUNX2 and SP7 are essential transcription factors for osteoblast differentiation at an early stage. Although RUNX2 inhibits osteoblast differentiation at a late stage, the function of SP7 at the late stage of osteoblast differentiation is not fully elucidated. Thus, we pursued the function of SP7 in osteoblast differentiation. RUNX2 induced Sp7 expression in Runx2(-/-) calvarial cells. Adenovir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 281 41 شماره
صفحات -
تاریخ انتشار 2006